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Abstract: - It is well known that input impedance of cross-coupled oscillator circuit has a fourth order denominator 
polynomial in frequency domain. Thus, it is important to design pole frequency by symbolic formula so that it is 
oscillate as a sinusoidal signal. It should be noted that in order for cross-coupled oscillator to oscillate, all of four 
pole frequencies should be positions on imaginary axis. The graph of time domain response is plotted by using 
inverse Laplace’s transform. Four unknowns and four brackets of poles can be factored which were derived by 
partial fraction expansion. Time domain response of cross-coupled oscillator is plotted by using 0.5 micron CMOS 
level1 transistor model.  
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1 Introduction 
 The cross-coupled oscillator circuit diagram in 

MOSFET technology was proposed long time ago 
but no one indicate when it is first proposed. The 
cross-coupled oscillator can be designed based on 
two concepts. The first concept is based on 
Barkhausen criterion which is based on grouping of 
symbolic parameters in the denominator polynomial, 
then the symbolic denominator, then the symbolic 
denominator polynomial can be separate into real and 
imaginary part. The symbolic real and imaginary part 
can be equated to zero so that the oscillation 
frequency can be derived. The second concept is 
based on inverse Laplace’s transform of the transfer 
function which can be separated into two 
methodologies. The first methodology is based on 
feedback concept. For example, it is the cascade of 
resonance amplifier one time which can be seen as a 
cross-coupled oscillator. It is composed of amplifier 
stage and feedback stage. The second methodology is 
based on input impedance derivation. This paper 
proposed how to design and optimize solution of 
input impedance in time domain by using partial 
fraction expansion. Pole frequencies of input 
impedance can be designed by approximate rooting 
formulas so that pole frequencies have only 
imaginary frequencies which is very difficult 

situation because usually pole frequencies are 
complex numbers.      

 The circuit diagram idea of the cross-coupled 
oscillator might come from the paper which is 
published by A. Abidi [1]. The circuit diagram of 
relaxation oscillator is different from the first cross-
coupled oscillator which is appeared in the textbook 
of B. Razavi [2] because that circuit diagram did not 
use BJT transistor, but it used MOSFET transistor. It 
did not used current source at emitter terminal of the 
BJT transistor, it did not used capacitive coupling 
between emitter terminal. It did not used parallel 
inductor and capacitor at the collector terminal. It did 
not used parallel inductor and capacitor at the 
collector terminal. But the collector terminal of Q1 
was connected with the base terminal of M1 with the 
gate terminal of M2. Since 1996, B. Razavi analyzed 
phase noise of CMOS oscillators of ring oscillator 
and relaxation oscillator. Input impedance function of 
CMOS cross-coupled oscillator was published by K. 
Tripetch since 2016 [3]. The mathematical empirical 
function were derived as a function of the DC bias 
point and geometrical parameters which was 
published since 2004 [4]. A comprehensive analysis 
of novel cross-coupled oscillator was derived by I. R. 
Chamas [5]. Common-Centroid layout of CMOS 
cross-coupled oscillator was proposed since 2009 [6] 
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to make perfect symmetrical layout. Because non-
symmetrical layout can make some offset in parasitic 
capacitance extraction and mismatch of aspect ratio.  
 CMOS fundamental oscillator was designed 
by B. Razavi since 2011 [7] at various frequencies. It 
is the highest oscillation frequency ever reported 
before 2011. The cross-coupled oscillator can be seen 
as a two-stage ring oscillator without parallel LC load 
between supply voltage and drain terminal but the 
paper reported three stage fully differential ring 
oscillator which can be seen as a cascade of three 
delay cells. The Barkhausen stability criterion was 
applied to a cascade three stage transfer function to 
derive the oscillation frequency formula which was 
published by P. Lucchi since 2011 [8]. The PLL 
synthesizer was designed for Bluetooth transmitter 
which was published by S. Saad [9]. The VCO of this 
PLL synthesizer used the cross-coupled oscillator 
with current source but they did not proposed design 
equation. The cross-coupled oscillator with current 
source could not be derived with feedback model 
because gain stage and feedback stage could not be 
separated because the sharing between gain stage and 
feedback stage is the current source. The closed form 
expressions for the oscillation frequency amplitude 
of CMOS LC tank oscillator were derived for the first 
time in weak inversion region of operation which was 
published since 2013 [10]. They solve stochastic 
differential equations which including two noise 
sources. The cross-coupled oscillator was designed by 
admittance parameters. Bostini [11] published the 
paper which they used the Barkhausen criterion to 
derived oscillation frequency.  
 

2 Factorization of the fourth order 
polynomial 
 Factorization may not be derived directly 
without non-linear algebra and without 
approximation. The document which is published by 
[12] indicated strange solution of cubic polynomial 
and quartic polynomial which are the solutions of the 
third order polynomial rooting and fourth order 
polynomial rooting. But this paper proposed the 
approximate fourth order polynomial rooting by 
multiply fourth brackets of symbolic rooting which 
can be written as follow.  
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 With approximation by eliminate one term, 

equation (1) can be written as follow.  
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(2) 
 The parameter names a,b,c and d can be seen 
as the pole frequencies if ( ) 0F s  . It can be written as 
a function of all coefficients in the right-hand side of 
equation (2) 
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3 Input Impedance of Simple Cross-
Coupled Oscillator 
 The CMOS cross-coupled oscillator circuit 
diagram is shown in figure 1 (a), its high frequency 
equivalent circuit of figure 1 (a) is shown in figure 1 
(b). Input impedance can be derived [3] to have four 
pole frequencies. It can be written as follow. 
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Figure1 (a) Cross-Coupled Oscillator Circuit 
Diagram (b) High Frequency Equivalent circuit 
diagram of (a) 
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(8) 
 Partial fraction of fourth order polynomial 
can be written as follows with four unknown and four 
pole frequencies.  
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(9) 

4 Three conditions for designing 
imaginary pole frequency from 
formulas 
 The first condition is that parameters x in 
equation ( 3)  should be real number if h can be 
designed to have value negative and l is positive so 
that the root on the right hand-side of equation (3) can 
be imaginary number. 
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If the inductors of resonance circuit are equal then 
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 The denominator should be negative so that 
the inductor can be positive. Isn’t it possible to 
determine the dc operating point so that the condition 

0Q   is existed.  
 The second condition is that  40 1 /l a  . This 

condition might be impossible. The third condition is 
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that parameter x in equation (3) should be pure 
imaginary number. Thus, parameter h should be equal 
with zero. Thus, transconductance in the circuit can 
be designed such that it is a function of passive 
inductor, passive capacitor, parasitic capacitances 
and passive resistor. It can be written as follows.  
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(14) 
 But from equation (14), it can be think that 
the result of inductance value is negative if the 
denominator is not designed to have negative value. 
Thus, the condition for equation (14) should be the 
same as equation (12). 
 

5 Solution of inverse Laplace’s 

transform of input impedance of cross-
coupled oscillator 
 
 The solution of inverse Laplace’s of general 
transfer function which have numerator polynomial 
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be written as follow. It can also be written in factor 
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which describes unknown value which must be 
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have the same order after multiply both sides of the 
equation with the factored form of pole polynomial 
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 Each pole frequency in equation (16) can be 
real number, imaginary number and complex 
number. From simulation with MATLAB with 
CMOS transistor level the solution usually contained 
conjugate complex numbers. Thus, the solution of 
inverse Laplace’s transform of complex pole number 
can be written as follow. 
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 The solution of voltage input waveform is a 
function of time but unknown constant solution can 
be complex numbers. Real number and imaginary 
number. It is dependent on design and simulation. The 
unknown constants are programed after simulation as 
follow. 
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      (19)  
 The solution of time domain waveform is 
still not finished. It must multiply symbolic complex 
number with complex trigonometry function which 
expand from Euler’s identity. After that separate real 
and imaginary signal as follows. 
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(21) 

6 Simulation of time domain waveform 
 Time domain waveform can be plotted by 
assigned drain current value with number. Then, 
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voltage biased must be designed by number. The 
resistive load can be designed with Ohm’s law and 
supply voltage. Then, aspect ratio was calculated with 
many constants in level1 0.5 micron transistor model 
such as oxide thickness, mobility of electron and 
hole, permittivity of dielectric which all parameters 
and design equation in level1 were shown in textbook 
which was published in [13]. Eight parameters which 
are four poles complex frequencies and four 
unknown constants are solved with MATLAB after 
all equations are programed in MATLAB.   
 The drain current is designed to have 0.1 
microampere. The passive capacitors are designed to 
have 500 nF and passive inductors are designed to 
have 40 pH.  

The period of the waveform can be 
approximated to be 28 ns. Thus, oscillation frequency 
is calculated to be 35.71 MHz. Oscillation amplitude 
is in the range plus and minus 200 mV.  
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(22) 

 
 

Figure2 Time domain waveform the upper 
waveform is real signal and lower waveform is 

imaginary signal  
 

7 Conclusion 
 From simulation results with MATLAB with 
design equation in (12) and (14), the inductance which 
is designed from simulation by procedure in section 
6, it indicates that the passive inductor value is too 
low which is less than picohenry. It might be 
unrealizable because it is too low. Another issue is 

that imaginary pole which is designed with 
approximated fourth order polynomial has no error. 
But the real pole has some error which were derived 
By eliminate one term from nine terms. The real part 
of input impedance should be minimized because of 
the solution of inverse Laplace’s transform is 
exponential of complex number multiply with time. 
If the real part of input impedance is more than one, 
the graph in time domain can be sawtooth wave. If the 
real part of input impedance is much more than 100. 
The time domain graph is seen to have a very high 
slope, its amplitude is risen very fast as a function of 
time. Its amplitude will reach supply voltage and stay 
constant as a function of time.     
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